Tissue engineered cartilage generated from human trachea using DegraPol scaffold.
نویسندگان
چکیده
OBJECTIVE To date numerous attempts have been undertaken to conquer the challenging problem of reconstructing long segmental tracheal defects, as yet without lasting success. Recently, employing concepts of tissue engineering in animals, cartilage-like constructs were transplanted in vivo. However, both the feasibility of fabricating tracheal replacements and the use of human tracheal chondrocytes (HTC) for tissue engineering are still under investigation. In this study, we optimized isolation and cultivation techniques for human tracheal cartilage, assessing the feasibility of seeding these cells onto a novel, three-dimensional (3-D) polyester-urethane polymer (DegraPol). METHODS Human tracheal cartilage was harvested from the trachea of lung donors, digested in 0.3% collagenase II, and the condrocytes serially passaged every 7-9 days. Cells were also cultivated over agar plate during the total 6-8 weeks expansion phase. Thereafter, chondrocytes were seeded onto DegraPol (pore sizes 150-200 microm) with a seeding density of 2.4 x 10(7)/ml, and chondrocyte-polymer constructs maintained during in vitro static culture. RESULTS HTC displayed stable proliferation kinetics in monolayer culture with positive expression of collagen type II. Following polymer seeding, both cellular proliferation and extracellular matrix (ECM) production, as measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and glycosaminoglycan assays, continued over extended culture. Active growth of HTC on DegraPol was further demonstrated by Alcian blue staining, with the histomorphological appearance of the construct resembling that of native cartilage. Scanning electron microscopy showed chondrocyte growth and ECM synthesis both on the surface and inside the porous scaffold, with a dense cell layer on the surface of the scaffold and a lower cell distribution in the scaffold's interior. CONCLUSIONS The harvested chondrocytes from human trachea cartilage expand well in vitro and possess the ability to form new cartilage-like tissue when seeded onto DegraPol matrix. However, improved culture conditions are needed to permit cellular growth throughout cell-polymer constructs.
منابع مشابه
Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea.
OBJECTIVE To test the effects of a continuous medium flow inside DegraPol scaffolds on the reepithelialization and revascularization processes of a tissue-engineered trachea prosthesis. METHODS In this proof-of-principle study a continuous medium flow was maintained within a tubular DegraPol scaffold by an inserted porous catheter connected to a pump system. The impact of the intra-scaffold m...
متن کاملEngineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice.
The purpose of the current study is to fabricate tissue engineered trachea with poly-lactic-glycolic acid (PLGA) non-woven mesh enforced by collagen type I. PLGA fibres coated with collagen solution were put together and fabricated into the shape of a human trachea, after drying and cross-linking treatment, a non-woven mesh with "C" shape formed. Chondrocytes from sheep nasal septum cartilage w...
متن کاملFabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method
Background: Since the treatments of long tracheal lesions are associated with some limitations, tissue engineered trachea is considered as an alternative option. This study aimed at preparing a composite scaffold, based on natural and synthetic materials for tracheal tissue engineering. Methods: Nine chitosan silk-based scaffolds were fabricated using three freezing rates (0.5, 1, and 2°C/m...
متن کاملTissue-engineered trachea: History, problems and the future.
This review tries to summarize the efforts over the past 20 years to construct a tissue-engineered trachea. After illustrating the main technical bottlenecks faced nowadays, we discuss what might be the solutions to these bottlenecks. You may find out why the focus in this research field shifts dramatically from the construction of a tubular cartilage tissue to reepithelialization and revascula...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2003